Computational Model for Predicting the Location of Glass Solidification in Optic Fiber Drawing
نویسندگان
چکیده
This paper presents a computational model for predicting the location at which the glass fiber solidifies during a highspeed drawing process. Although modeling of the optic fiber drawing process has been of interest for the past two decades, traditional fiber drawing process uses small diameter preforms and low draw speeds, where the glass usually solidifies and turns into fiber inside the furnace. Much larger preforms drawn at higher speeds have been used in the state-of-the-art fiber drawing systems to improve production efficiency and reduce cost. Insulated post-chambers are often added below the furnace to reduce the glass cooling rate so that the optical loss in the fiber is low. To provide a basis for design optimization of the post-chamber, we have solved the conjugate problem of the glass free surface flow and the air convection to determine the location where the glass solidifies. As radiation is the dominant mode of heat transfer in the glass, the radiative transfer equation (RTE) is solved directly by discrete ordinate method (DOM). The heat flux due to the mixed convection of the air is also numerically calculated along the glass free surface, which involves the boundary layer flow around a continuously moving fiber and the buoyancy driven flow through the open-ended channel. The calculated free shapes are compared against the experimentally measured data to verify the computational model.
منابع مشابه
COMPARISON OF DIFFERENT GLASS COMPOUNDS FOR INTRINSIC FIBER OPTIC TEMPERATURE SENSORS
Different glasses suitable for temperature sensing in the fiber optic sensors were studied in this article. The phase changes for eight different glass materials were calculated and results were compared. Our results showed that extra dense flint glass is the most sensitive one, while pure silica results in the lowest phase change. In another study the effect of wavelength on the phase variatio...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملAn Investigation into the Deep Drawing of Fiber-Metal Laminates based on Glass Fiber Reinforced Polypropylene
Abstract Fiber-metal laminates (FMLs) are new type of composite materials which could improve defects of traditional composites in ductility, formability, impact and damage tolerance. Drawing behavior of a thermoplastic based FML was investigated consisting of glass-fiber reinforced polypropylene composite laminate and aluminum AA1200-O as the core and skin layers, respectively. The effects o...
متن کاملExperimental and Numerical Study of Energy Absorption Capacity of Glass Reinforced SCC Beams
Various experimental studies have been carried out on glass fiber reinforced concrete (GFRC), but in limited studies, the behavior of this type of concrete is evaluated using finite element method (FEM). In this study an analysis model is presented for predicting energy absorption capacity of glass fiber reinforced self-compacting concrete (GFRCSCC) beams and the results are compared with exper...
متن کاملA fiber optic sensor for measuring glucose in aqueous solutions
In this paper, the set-up of a multi-mode fiber optic sensor for measuring glucose in aqueous solutions is investigated and evaluated. The basis of this sensor is based on the Fresnel Reflection. In this setup, a helium-neon laser is used as a light source, a fiber optic probe, photocell as detector and a digital multimeter. The statistical analysis of the recorded data shows a highly linear be...
متن کامل